

# Unlock the Future of Data Processing with HYPER-AI

### // HYPER-AI: Revolutionising the Network Continuum

HYPER-AI, funded by HORIZON Europe, overcomes network continuum challenges by integrating smart virtual nodes from the Cloud, Edge, and IoT to optimise intensive data processing.



#### **Smart, Autonomous Computing Swarms**

HYPER-Al introduces self-organised computing swarms of smart nodes, offering processing, storage, and communication resources. It uses semantic representation to enable seamless network integration.



#### **Autonomic Systems for Enhanced Performance**

Inspired by autonomic systems, HYPER-AI uses self-CHOP principles (self-configuration, self-healing, self-optimisation, and self-protection) to simplify deploying and managing smart swarms, ensuring efficient resource use and robust security for better performance.



#### **Vision for a Unified Computing Continuum**

HYPER-Al envisions a hyper-distributed multi-cloud/multi-edge environment unified by a collaborative framework. It aims to develop connectors for seamless integration, creating adaptive hybrid ecosystems.



## **Multi-Objective Optimisation Framework**

HYPER-Al's optimisation framework considers infrastructure, application needs, and energy efficiency. It dynamically allocates resources, maximising use and minimising energy consumption, while supporting rapid analysis and testing.



#### Transforming the Future of Computing

HYPER-Al fosters a new ecosystem of devices, software, hardware, and services within a computing continuum. Al-augmented optimisation and resource management from cloud to edge enhance resource discovery, interoperability, and data handling.







# Use case #1: Industry 4.0

AR-based / Al-augmented remote assembly and Robot-as-a-Service for improved process efficiency and workers' safety



# Use case #2: Green Energy

Energy efficient data processing simulation for monitoring of critical infrastructures



# Use case #3: Mobility and Automotive

Accessing automated and connected vehicles computing platforms



# Use case #4: Farming and Agriculture

Precision Agriculture improved by computing continuum from Cloud-to edge -to-loT



## Use case #5: Healthcare

Disease Control originating from Wild Animals to prevent future Pandemics































🕀 hyperai.eu



#### Join the HYPER-Al Revolution

Be a part of the future with HYPER-AI and join our community to make data processing across the computing continuum more flexible, efficient and innovative.

Visit our website or contact us

@HYPERAL Project | / /company/hyper-ai-project/



@hvperai-project



